Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking

نویسندگان

  • Pengfei Zhang
  • Li Wang
  • Shize Yang
  • Jennifer A Schott
  • Xiaofei Liu
  • Shannon M Mahurin
  • Caili Huang
  • Yu Zhang
  • Pasquale F Fulvio
  • Matthew F Chisholm
  • Sheng Dai
چکیده

Ordered mesoporous carbons (OMCs) have demonstrated great potential in catalysis, and as supercapacitors and adsorbents. Since the introduction of the organic-organic self-assembly approach in 2004/2005 until now, the direct synthesis of OMCs is still limited to the wet processing of phenol-formaldehyde polycondensation, which involves soluble toxic precursors, and acid or alkali catalysts, and requires multiple synthesis steps, thus restricting the widespread application of OMCs. Herein, we report a simple, general, scalable and sustainable solid-state synthesis of OMCs and nickel OMCs with uniform and tunable mesopores (∼4-10 nm), large pore volumes (up to 0.96 cm3 g-1) and high-surface areas exceeding 1,000 m2 g-1, based on a mechanochemical assembly between polyphenol-metal complexes and triblock co-polymers. Nickel nanoparticles (∼5.40 nm) confined in the cylindrical nanochannels show great thermal stability at 600 °C. Moreover, the nickel OMCs offer exceptional activity in the hydrogenation of bulky molecules (∼2 nm).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of MWCNTs Using Monometallic and Bimetallic Combinations of Fe, Co and Ni Catalysts Supported on Nanometric SiC via TCVD

Nanometric Carbid Silicon (SiC) supported monometallic and bimetallic catalysts containing Fe, Co, Ni transition metals were prepared by wet impregnation method. Multiwall carbon nanotubes (MWCNTs) were synthesized over the prepared catalysts from catalytic decomposition of acetylene at 850°C by thermal chemical vapor deposition (TCVD) technique. The synthesized nanomaterials (catalysts and CNT...

متن کامل

Direct synthesis of ordered imidazolyl-functionalized mesoporous polymers for efficient chemical fixation of CO2.

Ordered imidazolyl-functionalized mesoporous polymers (IM-MPs) are directly synthesized by an evaporation-induced self-assembly method, which are further functionalized with bromoethane and employed as highly efficient and recyclable catalysts for the cycloaddition of CO2 to epoxides.

متن کامل

Ordered gyroidal tantalum oxide photocatalysts: eliminating diffusion limitations and tuning surface barriers.

In this work we synthesized well-ordered, Ta2O5 films with a 3D-interconnected gyroid mesopore architecture with large pore sizes beyond 30 nm and extended crystalline domains through self-assembly of tailor-made triblock-terpolymers. This has effectively eliminated diffusion limitations inherent to previously reported mesoporous photocatalysts and resulted in superior hydrogen evolution with a...

متن کامل

Solid acids and their use as environmentally friendly catalysts in organic synthesis*

Tightening environmental legislation is driving the fine and speciality chemicals industries to consider alternative processes that avoid the use of conventional mineral acids. The use of heterogeneous catalysts in these processes would vastly simplify catalyst removal, minimizing the amount of waste formed. However, diffusion limitation of liquids within porous solids dictates that effective s...

متن کامل

Preparation of ZnO Nanocrystals with Desired Morphology from Coordination Polymers through a Solid-state Decomposition Route

One-dimensional (1D) coordination polymer, [Zn(4,4´-bpy)(H2O)4](ADC).4H2O (1) (4,4´-bpy = 4,4´-bipyridine and H2ADC = acetylenedicarboxylic acid), and three-dimensional (3D) metal-organic framework (MOF), Zn(ADC)2.(HTEA)2(2) (HTEA = triethylamine) were prepared at room temperature. The compounds were characterized by single-crystal X-ray diffraction and powder X-ray diffraction (PXRD) analyses....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017